第二百八十章 找到你了,柯南!(中)(1 / 2)

解。

这是数学中一个非常特殊的字,具有宏观意义上的纠缠态。

这个字后面可能空无一物,也可能会有洋洋洒洒的内容铺满版面。

同时哪怕是铺满版面的内容,最终的结果也很可能和空无一物相同。

另外它也和解题者的样貌、文具没有任何关系。

当然了。

作为这次观测的发起人,徐云自然不会是前者。

因此在写下一个解字后,他便继续开始绘制起了最初始的计算。

至于计算的初始切入点嘛

自然就是提丢斯波得定则了。

众所周知。

作为文明史的重要分支,人类的科学史可谓是众星云集,璨若星河。

这些牛人基本上都是天才,但也不乏后起之秀凭借匪夷所思、骇世惊俗的猜想而跻身于巨星之列。

比如法拉第,比如51岁才写出了5标准信道编码的埃尔达尔阿里坎。

又比如某个叫做约翰提丢斯的德意志中学老师。

约翰提丢斯生活在18世纪,那个时期,人们已知太阳系有六大行星。

即水星、金星、地球、火星、木星、土星。

提丢斯是个天文爱好者,经过长期的观测,他在1766年写下了这么一个数列:

04032^。

里头的是指行星到太阳的平均距离,也就是15亿公里。

其中0,1,2,4,8,16,0以后数字为2的n次方。

如果以日地距离也就是15亿公里为一个天文单位,那么六大行星到太阳距离的比值分别是:

04、07、10、16、52、100。

而实际上的数值是:

039、071、10、152、52、98。

是不是很惊讶?

没错。

在星空这个参考系中,两个结果可以说无限接近于一致。

17年的时候,赫歇尔就是在接近196的位置上即数列中的第八项发现了天王星。

从此,人们就对这一定则深信不疑了。

根据这一定则。

在数列的第五项即28的位置上也应该对应一颗行星或者小行星,只是在当时还没有被发现。

于是许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程。

这颗小行星就是谷神星,发现者正是现场的高斯。

后来这个规律被柏林天文台的台长波得总结,归纳成了一个经验公式来表示,叫做提丢斯波得定则。

说道这里,就又到了鞭尸某度百科的时间了。

如果你在百度上搜索提丢斯波得定则,会在详细介绍中看到一句话:

由于1846年发现的海王星、1930年发现的冥王星与该式的偏离很大,故许多人至今持否定态度”

其中百科给出的海王星的推算数据是388个天文单位,实际距离302个天文单位。

冥王星的推算数据是772个天文单位,实际距离396天文单位。

是的,看到这里,天文专业的同学应该发现了一个问题:

某度小编把冥王星的数据计算成了772这特么是太阳系内边界的距离

实际上呢。

在计算过程中,由于次多项式存在的缘故,冥王星和海王星是共用n8来计算的。

所以根据提丢斯波得定则计算,冥王星的误差率是2,而非200。

这是天体物理以及天体测量第二学期就会明确标注在课本上的内容,作为一个百科栏目居然会犯这种错误,也是挺无奈的

上辈子徐云恰好有某段情节正好用到了提丢斯波得定则,在骚扰咳咳,咨询某位在凤凰山观测站工作的朋友时,对方一度对百科表达了某些极其亲切的问候与祝福。

当然了。

造成这种情况的很大部分因素要归结于知识的冷门,提丢斯波得定则本身就是个小众知识,更别说冥王星这个小众中的小众了。

总而言之。

后世对于提丢斯波得定则在数学计算的数值方面基本是没意见的。

它的主要争议在于物理意义模糊,是一个纯粹的经验公式,很难从原理上进行解释。

像n1n之类的其他测定方式,基本上也都是数学方面精准,但物理意义不明的情况。

随后徐云又写下了两个个公式,也就是次多项式的函数和最小误差值:

012233。

ss0102。

这样一来。

只要找到合适的系数,就能令误差值最小了。

而就在徐云优化函数的同时。

其他人也没闲着,各自按着预定好的计划在行事。

例如老汤正和来自格林威治天文台的技术人员拍摄着今天的星图,高斯则整理起了布莱德雷家族留下来的独门观测记录:

“000066045001072261012684538043146853”

众所周知。

如果是需要仅仅通过数学来计算行星轨道数据,那么必然会用到开普勒行星三定律:

第一定律:

每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

第二定律:

在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。

也就是b。

第三定律则是:

各个行星绕太阳公转周期的平方,和它们的椭圆轨道的半长轴的立方成正比。

即23,为行星周期,为常数。

另外还需要用到笛卡尔坐标系下的椭圆曲线,即:

220。

有了这些,只要在加上某个工具就能进行计算了。

后世科技发达,计算轨道的工具一般是np,几秒钟就能计算出结果。

眼下虽然没有np协助,但这玩意儿的计算逻辑实际上就是最小二乘法。

而最小二乘法的发明者不是别人,正是高斯

“04314685301268453800107226120000660453”

“下一组是031468531021538462012960373”

“005337995001724942032307692”注:所有数据都来自ns开放的数据库,非杜撰

过了大概十多分钟。

负责最终计算的黎曼抹了把额头上的汗水,在纸上写下了一个数字:

04857342657342658。

虽然目前还无法知晓冥王星的具体位置,更不知道它的重量大小。

但此前曾经提及过。

天王星在扣除海王星的引力之后,轨道依旧是有些异常的。

这个异常数据就是计算的切入点,也就是黎曼他们计算出来的这个数字。

高斯接过这张纸扫了几眼,摇了摇头。

这次他们汇总到场的观测记录可以追述到1012年,手绘图接近三万两千多张,黑白照片大概2700张左右。

面对这些资料,三次多项式计算出来的结果显然做不到精确拟合。

不过这个情况早在高斯和徐云的预料之中,三次多项式只是一波低成本的试探罢了。

要是得出来的结果精度够高,那么便可以省不少力气,若是精度较低,高低也就亏一点时间罢了。

只见高斯面色没有丝毫变化,转头对黎曼说道:

“波恩哈德,开高次幂吧。”

黎曼点点头,犹豫片刻,问道:

“老师,还是用黄经吗?”

高斯想了想,大手一挥,说道:

“继续用黄经,上八次方!”

听到八次方这个字眼,黎曼表情顿时一肃:

“明白!”

这辈子是鲜为人的同学应该不知道。

在行星轨道计算中。

是行星的真位置,是平位置。

轨道经度是&039;,这两段角度分别在两条不同的轨道上。

通过行星的真位置&039;垂直画一条黄经线,在黄道上交于“,那么“就是黄经。

随后高斯又看向一旁的西尔维斯特,问道:

“詹姆斯,你们的时间算好了吗?”

西尔维斯特闻言咽了口唾沫,拧着眉毛道:

“已经计算出结果了,正在第三轮校验,马上就好!”

此前徐云将整个团队分成了数个模块,西尔维斯特负责的就是时间校正。

这也是非常关键的一环因为儒略日数和千年数是存在误差的。

假设给定的时间是标准的儒略日数,是千年数。

那么的表达式便是24515450365250。

在如今这种量级的计算中,哪怕是一位小数都可能差之千里。

五分钟后。

西尔维斯特猛地抬起头,对高斯道:

“校验无误,是0004422!”

高斯转过头,对黎曼说道:

“波恩哈德,记下了吗?”

黎曼飞速将数字填入,甚至只来得及发出一声嗯。

计算到了这一步,接下来的事情就很简单了,只剩下了计算。