第七百零九章 宇宙:你们不要过来啊!(1 / 2)

“但还有一种方法,或许有机会能走个捷径。”

甲板上。

听到杨振宁的这句话,黄昆下意识便握紧了桌子边缘:

“什么方法?是不是和驴有关?”

杨振宁原本作势欲答,听到驴这个字的时候忍不住一怔,生生止住了话头:

“驴?这和驴有什么关系?”

黄昆这才意识到自己似乎做出了下意识的反应,于是连忙有些尴尬的轻咳了一声:

“哦哦,没啥没啥,只是想岔了,老杨你继续,继续。”

杨振宁有些古怪的看了眼黄昆,心说这位老同学该不会是上船前被驴给踢过吧

随后他很快也深吸一口气,将注意力和话题同时拉回了原处:

“老黄,我说的这个方法对你不,可能对于国内来说,都属于一个比较陌生的领域。”

“实际上如果不是老赵他们的这篇论文给我带来了一些启发,我自己可能也想不到这方面。”

给黄昆打了个预防针后。

杨振宁顿了顿,继续说道:

“老黄,你对AdS时空了解多少?”

“AdS时空?”

黄昆眉头微微一掀,很快答道:

“老杨,莫非你说的是Anti-deSitter也就是反德西特时空?”

杨振宁轻轻点了点头。

早先提及过。

目前对引力描述最完美的理论便是广义相对论,这个框架叫做“论”,但实际上它的理论核心是一个方程组。

也就是.爱因斯坦引力场方程。

这是一组高度复杂的非线性偏微分方程组,要求解的未知函数既包括度规分量gμν,也包括能量动量张量的分量Tμν。

众所周知。

平直闽氏时空度规是:ηαβ=(1,1,1,1)以及号差±2。

所以引力场的空间几何对角线元是:ds2=(1+2)dt2+(12)(dx2+dy2+dz2)

而引力场静态引力势为:h00=2,牛顿引力场势为:▽2=4πGp

在近拟弱场下可以静态归一化,两式相比较,就得到:h00=4

代用牛顿引力势,轻松得到:▽2h00=16πp;(G=1)

在等号左侧加上一个表示空间波动的四维算符达朗贝尔□:□h00=16πp

设想场的变化只因场源的波动,可有关系:

□=▽2+0(v2▽2)

又因为应力能量张量是T00=p,□h00=16πT这就是“线性爱因斯坦场方程”。

从这个表达式不难看出,这个方程中对hαβ是线性处理的,就好像一个立体的东西压扁了给你看一样。

那么自然,质点系的引力场方程为:h00=8πT

引入爱因斯坦张量表示在弯曲时空中的静态场量即是:

Gαβ=8πTαβ。

同时假设时空物质随着时空面的曲率而分布,就像袋子里的东西分布在袋子里一样,无指标简化表示即为:

G+Λ=±KT此即爱因斯坦场方程的基本形式。

Λ是宇宙学常数,爱因斯坦认为自己做错的项目,所以现在先把它看成0即可。

根据场量显然系数K=8π,左边的是黎曼曲率Rαβ,而据比安基恒等式可以完成移项,所以就是:Rac12Rgac=8πGTαβ

若是在电磁场中,根据麦克斯韦方程,空间内真空光速平方系真空电容率与真空磁导率之乘积,即:

C2=με

因此Rac12Rgac=8πGμεTαβ,又因为Tαβ是二阶张量场切使用几何单位制C≡1,统一量纲,于是得到:

Rac12Rgac=8πGC4Tαβ

此即电磁作用下的爱因斯坦场方程。(之前有读者一直好奇场方程怎么来的,有机会就写了一下,全程靠记忆打出来的,应该没错,我这大概是起点第一个把场方程详细推导过程写出来的书?大概.)

哪怕是截止到后世的2023年。

爱因斯坦场方程依旧没有解析解,只有一些特解。

其中最著名的特解显然就是史瓦西解,也就是史瓦西度规——早先提及过,度规就是解的一种说法。

而在这少数特解中,有一个解最为特殊。

它便是.

AdS,也就是反德西特度规。

它是爱因斯坦场方程在宇宙常数为负时的最大对称真空解,通常也被称为“点内空间”。

这个特解出现的时间很早,毕竟威廉·德西特是最早几位和爱因斯坦共同研究时空结构的学者,反德西特度规和德西特度规都是用他名字命名的。

但是

这个特解虽然存世的时间很长,但一直以来都没有多少物理方面的研究价值。

不过如今看来,似乎杨振宁在这方面发现了什么?

随后杨振宁沉吟了一会儿,继续说道:

“老黄,你应该知道,在反德西特时空中,时空不是渐近下趋向平坦的。”

“也就是说,在距离中心天体较远处,时空依然有曲率存在,而并非一般的平直空间。”

“所以我在想,如果我们能以AdS为理论基础,整合出一个能够描述引力子的模型,然后再去寻找它在宇宙中的迹象”

“这样一来,有没有可能不需要达到普朗克能级,就能够发现引力子的存在呢?”

黄昆闻言一怔。

不过很快,他便消化起了杨振宁的想法。

AdS是一个数学上没有问题的场方程特解,和民科或者那些没有根据的猜想完全不是一个性质——很多人提及时空,都会下意识以为是科幻的概念。

但实际上这些科幻概念之所以会出现,有相当多都是因为已经有了物理或者数学上的模型。

当初的曲率引擎是阿库别瑞度规这事儿已经提过好几遍了,这里另外举个例子。

1916年的时候。

奥地利物理学家路德维希·弗拉姆提出了虫洞的概念。

1935年。

爱因斯坦和纳森.罗森对虫洞理论进行了完善,他们对称了虫洞的度规,引入径向分量grr和该虫洞喉咙的径向坐标r0,做出了一个数学模型,叫做爱因斯坦罗森桥。

这玩意儿就是后世几乎所有科幻里飞船会穿越的虫洞——这玩意儿真是个数学模型

这还没完呢。

按照原本历史发展。

眼下这个时期再过一年,罗伯特·富勒和约翰·惠勒就会发表论文证明:

如果虫洞连接同一个宇宙的两个地方,那么这类虫洞是不稳定的。

没错,是证明,而不是猜想。

所以时空这玩意儿在物理界也好,数学界也罢,并不是一个很玄乎的概念——真正玄乎的不是【时空】,而是【文明】。